Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
International journal of molecular sciences ; 24(5), 2023.
Article in English | EuropePMC | ID: covidwho-2248208

ABSTRACT

Although only 0.8–1% of SARS-CoV-2 infections are in the 0–9 age-group, pneumonia is still the leading cause of infant mortality globally. Antibodies specifically directed against SARS-CoV-2 spike protein (S) are produced during severe COVID-19 manifestations. Following vaccination, specific antibodies are also detected in the milk of breastfeeding mothers. Since antibody binding to viral antigens can trigger activation of the complement classical - pathway, we investigated antibody-dependent complement activation by anti-S immunoglobulins (Igs) present in breast milk following SARS-CoV-2 vaccination. This was in view of the fact that complement could play a fundamentally protective role against SARS-CoV-2 infection in newborns. Thus, 22 vaccinated, lactating healthcare and school workers were enrolled, and a sample of serum and milk was collected from each woman. We first tested for the presence of anti-S IgG and IgA in serum and milk of breastfeeding women by ELISA. We then measured the concentration of the first subcomponents of the three complement pathways (i.e., C1q, MBL, and C3) and the ability of anti-S Igs detected in milk to activate the complement in vitro. The current study demonstrated that vaccinated mothers have anti-S IgG in serum as well as in breast milk, which is capable of activating complement and may confer a protective benefit to breastfed newborns.

2.
Int J Mol Sci ; 24(5)2023 Feb 23.
Article in English | MEDLINE | ID: covidwho-2248209

ABSTRACT

Although only 0.8-1% of SARS-CoV-2 infections are in the 0-9 age-group, pneumonia is still the leading cause of infant mortality globally. Antibodies specifically directed against SARS-CoV-2 spike protein (S) are produced during severe COVID-19 manifestations. Following vaccination, specific antibodies are also detected in the milk of breastfeeding mothers. Since antibody binding to viral antigens can trigger activation of the complement classical - pathway, we investigated antibody-dependent complement activation by anti-S immunoglobulins (Igs) present in breast milk following SARS-CoV-2 vaccination. This was in view of the fact that complement could play a fundamentally protective role against SARS-CoV-2 infection in newborns. Thus, 22 vaccinated, lactating healthcare and school workers were enrolled, and a sample of serum and milk was collected from each woman. We first tested for the presence of anti-S IgG and IgA in serum and milk of breastfeeding women by ELISA. We then measured the concentration of the first subcomponents of the three complement pathways (i.e., C1q, MBL, and C3) and the ability of anti-S Igs detected in milk to activate the complement in vitro. The current study demonstrated that vaccinated mothers have anti-S IgG in serum as well as in breast milk, which is capable of activating complement and may confer a protective benefit to breastfed newborns.


Subject(s)
COVID-19 , SARS-CoV-2 , Infant, Newborn , Infant , Female , Humans , COVID-19 Vaccines , Lactation , Milk, Human , Complement System Proteins , Immunoglobulin G , Antibodies, Viral
3.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2044791

ABSTRACT

SARS-CoV-2 is a devastating virus that induces a range of immunopathological mechanisms including cytokine storm, apoptosis, inflammation and complement and coagulation pathway hyperactivation. However, how the infection impacts pregnant mothers is still being worked out due to evidence of vertical transmission of the SARS-CoV-2, and higher incidence of pre-eclampsia, preterm birth, caesarian section, and fetal mortality. In this study, we assessed the levels of the three main receptors of SARS-CoV-2 (ACE2, TMPRSS2 and CD147) in placentae derived from SARS-CoV-2 positive and negative mothers. Moreover, we measured the effects of Spike protein on placental cell lines, in addition to their susceptibility to infection. SARS-CoV-2 negative placentae showed elevated levels of CD147 and considerably low amount of TMPRSS2, making them non-permissive to infection. SARS-CoV-2 presence upregulated TMPRSS2 expression in syncytiotrophoblast and cytotrophoblast cells, thereby rendering them amenable to infection. The non-permissiveness of placental cells can be due to their less fusogenicity due to infection. We also found that Spike protein was capable of inducing pro-inflammatory cytokine production, syncytiotrophoblast apoptosis and increased vascular permeability. These events can elicit pre-eclampsia-like syndrome that marks a high percentage of pregnancies when mothers are infected with SARS-CoV-2. Our study raises important points relevant to SARS-CoV-2 mediated adverse pregnancy outcomes.

4.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-1989357

ABSTRACT

Lung surfactant protein D (SP-D) and Dendritic cell-specific intercellular adhesion molecules-3 grabbing non-integrin (DC-SIGN) are pathogen recognising C-type lectin receptors. SP-D has a crucial immune function in detecting and clearing pulmonary pathogens;DC-SIGN is involved in facilitating dendritic cell interaction with naïve T cells to mount an anti-viral immune response. SP-D and DC-SIGN have been shown to interact with various viruses, including SARS-CoV-2, an enveloped RNA virus that causes COVID-19. A recombinant fragment of human SP-D (rfhSP-D) comprising of α-helical neck region, carbohydrate recognition domain, and eight N-terminal Gly-X-Y repeats has been shown to bind SARS-CoV-2 Spike protein and inhibit SARS-CoV-2 replication by preventing viral entry in Vero cells and HEK293T cells expressing ACE2. DC-SIGN has also been shown to act as a cell surface receptor for SARS-CoV-2 independent of ACE2. Since rfhSP-D is known to interact with SARS-CoV-2 Spike protein and DC-SIGN, this study was aimed at investigating the potential of rfhSP-D in modulating SARS-CoV-2 infection. Coincubation of rfhSP-D with Spike protein improved the Spike Protein: DC-SIGN interaction. Molecular dynamic studies revealed that rfhSP-D stabilised the interaction between DC-SIGN and Spike protein. Cell binding analysis with DC-SIGN expressing HEK 293T and THP- 1 cells and rfhSP-D treated SARS-CoV-2 Spike pseudotypes confirmed the increased binding. Furthermore, infection assays using the pseudotypes revealed their increased uptake by DC-SIGN expressing cells. The immunomodulatory effect of rfhSP-D on the DC-SIGN: Spike protein interaction on DC-SIGN expressing epithelial and macrophage-like cell lines was also assessed by measuring the mRNA expression of cytokines and chemokines. RT-qPCR analysis showed that rfhSP-D treatment downregulated the mRNA expression levels of pro-inflammatory cytokines and chemokines such as TNF-α, IFN-α, IL-1β, IL- 6, IL-8, and RANTES (as well as NF-κB) in DC-SIGN expressing cells challenged by Spike protein. Furthermore, rfhSP-D treatment was found to downregulate the mRNA levels of MHC class II in DC expressing THP-1 when compared to the untreated controls. We conclude that rfhSP-D helps stabilise the interaction between SARS- CoV-2 Spike protein and DC-SIGN and increases viral uptake by macrophages via DC-SIGN, suggesting an additional role for rfhSP-D in SARS-CoV-2 infection.

5.
Front Immunol ; 12: 775168, 2021.
Article in English | MEDLINE | ID: covidwho-1555043

ABSTRACT

COVID-19 is characterized by virus-induced injury leading to multi-organ failure, together with inflammatory reaction, endothelial cell (EC) injury, and prothrombotic coagulopathy with thrombotic events. Complement system (C) via its cross-talk with the contact and coagulation systems contributes significantly to the severity and pathological consequences due to SARS-CoV-2 infection. These immunopathological mechanisms overlap in COVID-19 and pre-eclampsia (PE). Thus, mothers contracting SARS-CoV-2 infection during pregnancy are more vulnerable to developing PE. SARS-CoV-2 infection of ECs, via its receptor ACE2 and co-receptor TMPRSS2, can provoke endothelial dysfunction and disruption of vascular integrity, causing hyperinflammation and hypercoagulability. This is aggravated by bradykinin increase due to inhibition of ACE2 activity by the virus. C is important for the progression of normal pregnancy, and its dysregulation can impact in the form of PE-like syndrome as a consequence of SARS-CoV-2 infection. Thus, there is also an overlap between treatment regimens of COVID-19 and PE. C inhibitors, especially those targeting C3 or MASP-2, are exciting options for treating COVID-19 and consequent PE. In this review, we examine the role of C, contact and coagulation systems as well as endothelial hyperactivation with respect to SARS-CoV-2 infection during pregnancy and likely development of PE.


Subject(s)
COVID-19/immunology , Complement System Proteins/immunology , Pre-Eclampsia/immunology , Pregnancy Complications, Infectious/immunology , COVID-19/physiopathology , Complement Inactivator Proteins/therapeutic use , Endothelium/immunology , Female , Humans , Pre-Eclampsia/physiopathology , Pre-Eclampsia/prevention & control , Pregnancy , Pregnancy Complications, Infectious/drug therapy , Pregnancy Complications, Infectious/physiopathology , SARS-CoV-2 , Thrombosis/immunology , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL